
Towards a fully functorial directed type theory

Fernando Chu

DutchCATS, February 2025

1 / 23



Table of Contents

Motivation

Extending the groupoid model

Dependent 2-sided fibrations

Summary and future work

2 / 23



Motivation

Extensional Type Theory Sets

Homotopy Type Theory Spaces

...

Directed Type Theory Categories

3 / 23



The idea

1. We start with MLTT and the groupoid model.

2. Import the rules we see in the semantics back to the syntax.
▶ Add a hom type constructor, as in North [2].
▶ Annotate the variances, x

ω

: X with ω ∈ {+,−, ◦}, as in Nuyts [3].
▶ Add a new context extension operation, capturing dependent

2-sided fibrations.

4 / 23



The idea

1. We start with MLTT and the groupoid model.

2. Import the rules we see in the semantics back to the syntax.

▶ Add a hom type constructor, as in North [2].
▶ Annotate the variances, x

ω

: X with ω ∈ {+,−, ◦}, as in Nuyts [3].
▶ Add a new context extension operation, capturing dependent

2-sided fibrations.

4 / 23



The idea

1. We start with MLTT and the groupoid model.

2. Import the rules we see in the semantics back to the syntax.
▶ Add a hom type constructor, as in North [2].

▶ Annotate the variances, x
ω

: X with ω ∈ {+,−, ◦}, as in Nuyts [3].
▶ Add a new context extension operation, capturing dependent

2-sided fibrations.

4 / 23



The idea

1. We start with MLTT and the groupoid model.

2. Import the rules we see in the semantics back to the syntax.
▶ Add a hom type constructor, as in North [2].
▶ Annotate the variances, x

ω

: X with ω ∈ {+,−, ◦}, as in Nuyts [3].

▶ Add a new context extension operation, capturing dependent
2-sided fibrations.

4 / 23



The idea

1. We start with MLTT and the groupoid model.

2. Import the rules we see in the semantics back to the syntax.
▶ Add a hom type constructor, as in North [2].
▶ Annotate the variances, x

ω

: X with ω ∈ {+,−, ◦}, as in Nuyts [3].
▶ Add a new context extension operation, capturing dependent

2-sided fibrations.

4 / 23



The Grothendieck construction

Definition (Grothendieck construction)

Let A be a category and B : A → Cat a functor. The (covariant)
Grothendieck construction is the category A.B that has:

Objects: Pairs (a, b) with a : A and b : B(a).
Morphisms: A morphism (a, b) → (a′, b′) is a pair (α, β) with
α : a → a′ and β : B(α)(b) → b′.
. . .

It is the categorification of a dependent sum.

5 / 23



The Grothendieck construction

Graphically, its morphisms look like this:

A a a′

B(a) B(a′)

b

b′

B(α)b

α

Bα

β

Note that there is a projection πA : A.B → A, which is in fact an
opfibration.

6 / 23



The groupoid model

Hofmann and Streicher’s model [1] is as follows:

▶ Contexts ⇝ Groupoids

• Empty context ⇝ ⋆

▶ Types in context ⇝ Functors

• (Γ ⊢ A : U)⇝ (A : Γ → Grpd)

▶ Context extension ⇝
Grothendieck construction

• (Γ, x : A)⇝ (Γ.A)

▶ Terms in context ⇝
Sections

• (Γ ⊢ x : A)⇝ (Γ → Γ.A)

Hence, we interpret:

(· ⊢ A : U)⇝ (A : ⋆ → Grpd)⇝ a groupoid A

(a : A ⊢ Fa : B)⇝ a section A → A.B ⇝ a functor A → B

7 / 23



The groupoid model

Hofmann and Streicher’s model [1] is as follows:

▶ Contexts ⇝ Groupoids

• Empty context ⇝ ⋆

▶ Types in context ⇝ Functors

• (Γ ⊢ A : U)⇝ (A : Γ → Grpd)

▶ Context extension ⇝
Grothendieck construction

• (Γ, x : A)⇝ (Γ.A)

▶ Terms in context ⇝
Sections

• (Γ ⊢ x : A)⇝ (Γ → Γ.A)

Hence, we interpret:

(· ⊢ A : U)⇝ (A : ⋆ → Grpd)⇝ a groupoid A

(a : A ⊢ Fa : B)⇝ a section A → A.B ⇝ a functor A → B

7 / 23



The category model

Hofmann and Streicher’s model [1] is as follows:

▶ Contexts ⇝ Categories

• Empty context ⇝ ⋆

▶ Types in context ⇝ Functors

• (Γ ⊢ A : U)⇝ (A : Γ → Cat)

▶ Context extension ⇝
Grothendieck construction

• (Γ, x : A)⇝ (Γ.A)

▶ Terms in context ⇝
Sections

• (Γ ⊢ x : A)⇝ (Γ → Γ.A)

Hence, we interpret:

(· ⊢ A : U)⇝ (A : ⋆ → Cat)⇝ a category A

(a : A ⊢ Fa : B)⇝ a section A → A.B ⇝ a functor A → B

7 / 23



The hom-Form rule

⊢ A : U
a : A, b : A ⊢ IdA(a, b) : U

Id-Form

This is interpreted as the functor hom : A.A → Grpd.

a a′

b b′

∼=

∼=

8 / 23



The hom-Form rule

⊢ A : U
a : A, b : A ⊢ IdA(a, b) : U

Id-Form

This is interpreted as the functor hom : A.A → Grpd.

a a′

b b′

∼=

∼=

8 / 23



The hom-Form rule

⊢ A : U
a : A, b : A ⊢ homA(a, b) : U

hom-Form

This is interpreted as the functor hom : A.A → Cat.

a a′

b b′

∼=

∼=

8 / 23



The hom-Form rule

⊢ A : U
a : Aop, b : A ⊢ homA(a, b) : U

hom-Form

This is interpreted as the functor hom : Aop.A → Cat.

a a′

b b′

8 / 23



The hom-Form rule

⊢ A : U

a
−
:A, b : A ⊢ homA(a, b) : U

hom-Form

This is interpreted as the functor hom : Aop.A → Cat.

a a′

b b′

8 / 23



The hom-Intro rule

⊢ A : U
a : A ⊢ refla : IdA(a, a)

Id-Intro

This is interpreted as the morphism id below

(A.A). hom a a′

A A.A a a′

πid

∆ α

α

ida ida

9 / 23



The hom-Intro rule

⊢ A : U
a : A ⊢ refla : IdA(a, a)

Id-Intro

This is interpreted as the morphism id below

(A.A). hom a a′

A A.A a a′

πid

∆ α

α

ida ida

9 / 23



The hom-Intro rule

⊢ A : U
a : A ⊢ refla : homA(a, a)

hom-Intro

This is interpreted as the morphism id below

(A.A). hom a a′

A A.A a a′

πid

∆ α

α

ida ida

9 / 23



The hom-Intro rule

⊢ A : U
a : A ⊢ refla : homA(a, a)

hom-Intro

This is interpreted as the morphism id below (?)

(Aop.A). hom a a′

A Aop.A a a′

πid

∆ α

α

ida ida

9 / 23



The hom-Intro rule

⊢ A : U
a : Acore ⊢ refla : homA(a, a)

-Intro

This is interpreted as the morphism id below

(Aop.A). hom a a′

Acore Aop.A a a′

πid

∆ α

α

ida ida

9 / 23



The hom-Intro rule

⊢ A : U
a : Acore ⊢ refla : homA(a, a)

-Intro

This is interpreted as the morphism id below

(Aop.A). hom a a′

Acore Aop.A a a′

πid

∆

α−1

α

ida ida

9 / 23



The hom-Intro rule

⊢ A : U
a : Acore ⊢ refla : homA(a, a)

-Intro

This is interpreted as the morphism id below

(Aop.A). hom a a′

Acore Aop.A a a′

πid

∆

α−1

α

ida ida

This works! But. . .

9 / 23



Some problems

The core approach works, but it has some problems:

▶ Restrictive elimination rule.

▶ Which implies terms are not functorial on all variables, e.g.

a : A ⊢ Fa : B

a : Acore, b : A, f : hom(a, b) ⊢ Ff : hom(Fa,Fb)

▶ There obvious translation of a homotopy in HoTT

a : Acore ⊢ φa : hom(Fa,Ga)

is not natural transformations F → G in the model.

10 / 23



The ideal hom-Intro rule

The ideal introduction rule would be

⊢ A : U
a : A ⊢ refla : hom(a, a)

hom-Intro

We want this to be interpreted as follows

A→ a a′

A A.A a a′

id

∆

α

α

ida ida

That implies assigning to every profunctor H : Aop × A → Cat an
associated functor π : H̄ → A× A. The 2-sided fibration [4]
associated to H is this construction!

11 / 23



The ideal hom-Intro rule

The ideal introduction rule would be

⊢ A : U
a : A ⊢ refla : hom(a, a)

hom-Intro

We want this to be interpreted as follows

A→ a a′

A A.A a a′

id

∆

α

α

ida ida

That implies assigning to every profunctor H : Aop × A → Cat an
associated functor π : H̄ → A× A. The 2-sided fibration [4]
associated to H is this construction!

11 / 23



The ideal hom-Intro rule

The ideal introduction rule would be

⊢ A : U
a : A ⊢ refla : hom(a, a)

hom-Intro

We want this to be interpreted as follows

A→ a a′

A A.A a a′

id

∆

α

α

ida ida

That implies assigning to every profunctor H : Aop × A → Cat an
associated functor π : H̄ → A× A. The 2-sided fibration [4]
associated to H is this construction!

11 / 23



Dependent 2-sided fibrations

Definition (D2SFib)

Let A be a category and B : A → Cat a functor. A dependent
2-sided fibration (D2SFib) from A to B is a category C equipped
with the following data

1. A functor q : C → A.B, together with data specifying that for
each a : A, the restriction q|a as below

C (a) (A.B)(a) 1

C A.B A

q|a

⌟ ⌟
a

q πA

is a fibration.

12 / 23



Dependent 2-sided fibrations

Definition (D2SFib (cont.))

2. Writing p :≡ πA ◦ q : C → A, we require data
specifying that p is an opfibration.

Such that

1. q is an opcartesian functor.

2. For each α : pe → a in A and β : b → qe in
B(p(e)), the canonical morphism

α!β
∗e → (B(α)β)∗α!e

given by any of the universal properties is an
identity.

C

A.B

A

q

πA

13 / 23



Dependent 2-sided fibrations

Proposition

Let A be a category. There is an equivalence of categories

Fibsplit(A) ≃ Functor(Aop,Cat)

Proposition

Let A and B be categories. There is an equivalence of categories

2SFibsplit(A,B) ≃ Functor(A× Bop,Cat)

Proposition

Let A be a category and B : A → Cat a functor. There is an
equivalence of categories

D2SFibsplit(A,B) ≃ Functor(A.(op ◦ B),Cat)
14 / 23



Dependent 2-sided fibrations

A a a′

B(a) B(a′)

C (a, b) C (a′, b′)

C (a′,B(α)b)

b

b′

c c ′c ′

B(α)b

C (α, idb)c

C (ida, β)c
′

α

β

θ

15 / 23



New rules

Coming back to type theory, in addition to the usual context
extension rule

⊢ A : U a : A ⊢ B(a) : U
a : A, b

ω
: B(a) ctx

Ctx-Ext1

We get a new context extension operation

⊢ A : U a : A ⊢ B(a) : U
a : A, b

−
: B(a) ⊢ C (a, b) : U

a : A, b : B(a), c
ω
: C (a, b) ctx

Ctx-Ext2

16 / 23



New rules

Coming back to type theory, in addition to the usual context
extension rule

⊢ A : U a : A ⊢ B(a) : U
a : A, b

ω
: B(a) ctx

Ctx-Ext1

We get a new context extension operation

⊢ A : U a : A ⊢ B(a) : U
a : A, b

−
: B(a) ⊢ C (a, b) : U

a : A, b : B(a), c
ω
: C (a, b) ctx

Ctx-Ext2

16 / 23



New rules

This lets us derive

⊢ A : U a : A ⊢ A : U
b : A, a

−
: A ⊢ homA(a, b) : U

b : A, a : A, f : homA(a, b) ctx
Ctx-Ext2

Which let us make sense of our introduction rule

⊢ A : U
a : A ⊢ refla : hom(a, a)

hom-Intro

And this also lifts against all opfibrations.

17 / 23



New rules

This lets us derive

⊢ A : U a : A ⊢ A : U
b : A, a

−
: A ⊢ homA(a, b) : U

b : A, a : A, f : homA(a, b) ctx
Ctx-Ext2

Which let us make sense of our introduction rule

⊢ A : U
a : A ⊢ refla : hom(a, a)

hom-Intro

And this also lifts against all opfibrations.

17 / 23



New rules

This lets us derive

⊢ A : U a : A ⊢ A : U
b : A, a

−
: A ⊢ homA(a, b) : U

b : A, a : A, f : homA(a, b) ctx
Ctx-Ext2

Which let us make sense of our introduction rule

⊢ A : U
a : A ⊢ refla : hom(a, a)

hom-Intro

And this also lifts against all opfibrations.

17 / 23



Dependent 2-sided fibrations

Proposition

Let X be a category. If q : C → A.B is a D2SFib, and we have a
commutative diagram as below, with G mapping chosen
opcartesian lifts to chosen opcartesian lifts, then there exists a lift
as making everything commute.

X C

X→

X .X A.B

X A

F

id−

q

(cod, dom)

G

π1 πA

H

18 / 23



A new elimination rule

We now obtain a new elimination rule

⊢ A : U y : A, x
−
: A ⊢ C (x , y) : U

x : A ⊢ c : C (x , x)

y : A, x : A, f : hom(x , y) ⊢ jx ,y ,f ,c : C (x , y)
hom-Elim

Which lets us have prove things like:

x : A ⊢ Fx : B

y : A, x
−
: A ⊢ hom(Fx ,Fy) : U

x : A ⊢ reflx : hom(Fx ,Fx)

y : A, x : A, f : hom(x , y) ⊢ jx ,y ,f ,c : hom(Fx ,Fy)
hom-Elim

19 / 23



A new elimination rule

We now obtain a new elimination rule

⊢ A : U y : A, x
−
: A, f : hom(x , y) ⊢ C (x , y , f ) : U

x : A ⊢ c : C (x , x , reflx)

y : A, x : A, f : hom(x , y) ⊢ jx ,y ,f ,c : C (x , y , f )
hom-Elim

Which lets us have prove things like:

x : A ⊢ Fx : B

y : A, x
−
: A ⊢ hom(Fx ,Fy) : U

x : A ⊢ reflx : hom(Fx ,Fx)

y : A, x : A, f : hom(x , y) ⊢ jx ,y ,f ,c : hom(Fx ,Fy)
hom-Elim

19 / 23



Some solutions

The D2SFib approach gives some partial solutions:

▶ Less restrictive elimination rule.

▶ Terms are fully functorial in all variables:

a : A ⊢ Fa : B

b : A, a : A, f : hom(a, b) ⊢ Ff : hom(Fa,Fb)

▶ The obvious translation of a homotopy in HoTT

a : A ⊢ φa : hom(Fa,Ga)

is a natural transformations F → G in the model.

▶ We can prove Yoneda inside this theory!

20 / 23



Summary and future work

▶ We extend the groupoid model of MLTT to a category model.

▶ We add a hom-type constructor.

▶ We add a modality to capture contravariance.

▶ We add a new context extension to capture operations
involving the arrow category.

▶ We hope that these rules (and some more) will allow for
reasoning about categories syntactically. We need to
strengthen the elimination principle.

21 / 23



Thank you!

22 / 23



References

[1] Martin Hofmann and Thomas Streicher. “The groupoid
interpretation of type theory”. In: Twenty-five years of
constructive type theory (Venice, 1995) 36 (1998),
pp. 83–111.

[2] Paige Randall North. “Towards a directed homotopy type
theory”. In: Electronic Notes in Theoretical Computer Science
347 (2019), pp. 223–239.

[3] Andreas Nuyts. “Towards a directed homotopy type theory
based on 4 kinds of variance”. In: Mém. de mast. Katholieke
Universiteit Leuven (2015).

[4] Ross Street. “Fibrations in bicategories”. en. In: Cahiers de
topologie et géométrie différentielle 21.2 (1980). (Corrections
in 28(1):53–56, 1987), pp. 111–160. url: http:
//www.numdam.org/item/CTGDC_1980__21_2_111_0/.

23 / 23

http://www.numdam.org/item/CTGDC_1980__21_2_111_0/
http://www.numdam.org/item/CTGDC_1980__21_2_111_0/

	Motivation
	Extending the groupoid model
	Dependent 2-sided fibrations
	Summary and future work
	References

