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Motivation

Extensional Type Theory -~ Sets

Homotopy Type Theory  ~ s Spaces

Directed Type Theory ~  (Categories
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The idea

1. We start with MLTT and the groupoid model.
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The idea

1. We start with MLTT and the groupoid model.

2. Import the rules we see in the semantics back to the syntax.
> Add a hom type constructor, as in North [2].

> Annotate the variances, x © X with w € {4, —, 0}, as in Nuyts [3].

> Add a new context extension operation, capturing dependent
2-sided fibrations.
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The Grothendieck construction

Definition (Grothendieck construction)

Let A be a category and B : A — Cat a functor. The (covariant)
Grothendieck construction is the category A.B that has:
Objects: Pairs (a, b) with a: A and b : B(a).
Morphisms: A morphism (a, b) — (a’, b') is a pair («, 3) with
a:a—a and §: B(a)(b) = b'.

It is the categorification of a dependent sum.
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The Grothendieck construction

Graphically, its morphisms look like this:

B(a) — 2%, B(a)
B(a)b
1B

bl

S e

Note that there is a projection w4 : A.B — A, which is in fact an
opfibration.

6
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The groupoid model

Hofmann and Streicher's model [1] is as follows:

» Context extension ~~

» Contexts ~» Groupoids Grothendieck construction
e Empty context ~ * o (Mx:A) ~ (IA

» Types in context ~~ Functors > Terms in context ~~
o (THA:U)~ (A:T — Grpd) Sections

o MTkEx:A)~ (I =T.A)

Hence, we interpret:
((FA:U)~ (A:x— Grpd) ~> a groupoid A
(a: A Fa: B) ~> a section A— A.B ~~ a functor A— B
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The category model

Hofmann and Streicher's model [1] is as follows:

» Context extension ~~

» Contexts ~» Categories Grothendieck construction
e Empty context ~ * o (Mx:A) ~ (IA

» Types in context ~~ Functors > Terms in context ~~
o THFA:U)~ (A:T — Cat) Sections

o MTkEx:A)~ (I =T.A)

Hence, we interpret:
((FA:U)~ (A:x— Cat) ~» a category A
(a: A Fa: B) ~> a section A— A.B ~~ a functor A— B

23



The hom-FORM RULE

FA:U

a:Ab:AbIda(a,b): U

Id-ForM
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The hom-FORM RULE

FA: U
a:Ab: Ak homa(a,b): U

hom-FOrRM

This is interpreted as the functor hom : A°?. A — Cat.
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The hom-INTRO rule

FA:U

a: Akl refl, 1 1da(a, a)

Id-INTRO
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The hom-INTRO rule

FA:U

Id-INTRO
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This is interpreted as the morphism id below

(A.A). hom
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The hom-INTRO rule

FA:U

hom-INTRO
a: Ak refl, : homa(a, a)

This is interpreted as the morphism id below (?7)

(A°P.A). hom s g

a
% lﬂ iddl id,
a /

AT APA
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The hom-INTRO rule

FA: U
a: At refl, - homa(a, a)

-INTRO

This is interpreted as the morphism id below

(A°P.A). hom —2 53

/ J dal id.

ACOI’e s AOp A
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The hom-INTRO rule

FA:U

-INTRO
a: At refl, : homa(a, a)

This is interpreted as the morphism id below

(A°P.A). hom A

/ l { fda

Acore AO o] A



The hom-INTRO rule

FA:U

a: At refl, - homa(a, a)

-INTRO
This is interpreted as the morphism id below

(A°P.A). hom “—a

a
% lﬂ' idal ida
AT s A% A 2

This works! But. ..
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Some problems

The core approach works, but it has some problems:

» Restrictive elimination rule.

» Which implies terms are not functorial on all variables, e.g.

a:AFFa: B
a: A b: A f :hom(a,b) Ff:hom(Fa, Fb)

» There obvious translation of a homotopy in HoTT
a: Ak ¢, hom(Fa, Ga)

is not natural transformations F — G in the model.
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The ideal hom-INTRO rule

The ideal introduction rule would be

HFA:U

hom-INTRO
a: Al refl, : hom(a, a)
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The ideal hom-INTRO rule

The ideal introduction rule would be

HFA:U

hom-INTRO
a: Al refl, : hom(a, a)

We want this to be interpreted as follows

A—>

V l idal id,

AT>A.A

11/23



The ideal hom-INTRO rule

The ideal introduction rule would be

FA: U
a: Al refl, : hom(a, a)

hom-INTRO

We want this to be interpreted as follows

~

A- SN

]

a
ida
A—— AA a

~

(03
That implies assigning to every profunctor H : A°°P x A — Cat an
associated functor m: H — A x A. The 2-sided fibration [4]
associated to H is this construction!
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Dependent 2-sided fibrations

Definition (D2SFib)

Let A be a category and B : A — Cat a functor. A dependent
2-sided fibration (D2SFib) from A to B is a category C equipped
with the following data

1. A functor g : C — A.B, together with data specifying that for
each a: A, the restriction q|, as below

C(a) (A.B)(a) —— 1
| [
C 7 » A.B = > A

is a fibration.
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Dependent 2-sided fibrations

Definition (D2SFib (cont.))

2. Writing p:=mapo0q: C — A, we require data
specifying that p is an opfibration.
Such that

1. g is an opcartesian functor.

0

H
Q

2. For each ao: pe —+ain Aand 8 : b— ge in
B(p(e)), the canonical morphism

(_
3
S

af*e = (B(a)B) are

>

given by any of the universal properties is an
identity.
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Dependent 2-sided fibrations

Let A be a category. There is an equivalence of categories

Fibspiit(A) =~ Functor(A°P, Cat)

Let A and B be categories. There is an equivalence of categories

2SFibgpie(A, B) ~ Functor(A x B°P, Cat)

Proposition

Let A be a category and B : A — Cat a functor. There is an
equivalence of categories

D2SFibgpit(A, B) =~ Functor(A.(op o B), Cat)
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Dependent 2-sided fibrations

C(a, b)
B(a) B(a')
B(a)b
18
b/
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New rules

Coming back to type theory, in addition to the usual context
extension rule

HFA:U a:AkB(a):U
a:A b7 B(a)ctx

Crx-ExT11
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New rules

Coming back to type theory, in addition to the usual context
extension rule

HFA:U a:AkB(a):U

a:A b7 B(a)ctx e
We get a new context extension operation
FA:U a:AkB(a):U
a:Ab:B(a)k C(a,b): U CTR-EXT,

a:Ab:B(a),c’ C(a,b)ctx

16
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New rules

This lets us derive
FA: U a:AFA: U
b:Aa: At homa(a,b): U
b:Aa:Af:homa(a,b)ctx

CTx-EXT,
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New rules

This lets us derive
FA:U a:AFA: U
b:Aa: Al homa(a,b): U
b:Aa:Af:homa(a,b)ctx

CTx-EXT>

Which let us make sense of our introduction rule

FA:U

hom-INTRO
a: Akt refl, : hom(a, a)

And this also lifts against all opfibrations.
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Dependent 2-sided fibrations

Proposition

Let X be a category. If q: C — A.B is a D2SFib, and we have a
commutative diagram as below, with G mapping chosen
opcartesian lifts to chosen opcartesian lifts, then there exists a lift
as making everything commute.
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A new elimination rule

We now obtain a new elimination rule
FA:U y:Ax:AFC(x,y): U
x: Ak c: C(x,x)

- hom-ELIM
y A x A f hom(x,y) Fjcy et C(x,y)

Which lets us have prove things like:

x:AFFx: B
y:Ax 1 At hom(Fx, Fy) : U
x : At refly : hom(Fx, Fx)

- hom-ELIM
y A x A f ihom(x,y) F jcy.fr.c : hom(Fx, Fy)
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A new elimination rule

We now obtain a new elimination rule

FA:U y:Ax A f:hom(x,y)F C(x,y,f): U
x:Ab c: C(x,x,refly)

- hom-ELIM
y A x A fhom(x,y) Fjcyre: Clx,y,f)
Which lets us have prove things like:
x:AFFx: B
y:Ax 1 A hom(Fx, Fy) :U
x : At refly : hom(Fx, Fx)
hom-ELIM

y A x A f ihom(x,y) F jcy.fr.c : hom(Fx, Fy)
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Some solutions

The D2SFib approach gives some partial solutions:

» Less restrictive elimination rule.

» Terms are fully functorial in all variables:

a:ArFa: B

b:A/a: A f:hom(a,b)tF Ff:hom(Fa, Fb)
» The obvious translation of a homotopy in HoTT
a: Al ¢, hom(Fa, Ga)

is a natural transformations F — G in the model.

» We can prove Yoneda inside this theory!
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Summary and future work

> We extend the groupoid model of MLTT to a category model.
> We add a hom-type constructor.
> We add a modality to capture contravariance.

> We add a new context extension to capture operations
involving the arrow category.

» We hope that these rules (and some more) will allow for

reasoning about categories syntactically. We need to
strengthen the elimination principle.
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Thank you!
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