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The idea

1. We start with MLTT and the groupoid model.
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The idea

1. We start with MLTT and the groupoid model.

2. Import the rules we see in the semantics back to the syntax,
e.g.:
o Add an op type constructor
o Add a hom type constructor
o Add a new context extension operation, capturing dependent
2-sided fibrations.
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The groupoid model

The Hofmann and Streicher 1998 model is as follows:

e Context extension ~»

e Contexts ~» Groupoids Grothendieck construction
e Empty context ~» * o (ITz:A)~ (T'A)

e Types in context ~~ Functors e Terms in context ~~
o FA:U)~ (A:T — Grpd) Sections

e T'kFz:A)~ (' 5T.4)

Hence, we interpret:
(FA:U)~ (A:*— Grpd) ~ a groupoid A
(a: At Fa: B) ~ a section A — A.B ~ a functor A — B
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e Contexts ~» Groupoids Grothendieck construction
e Empty context ~» o (ITz:A)~ (T'A)

e Types in context ~» Functors e Terms in context ~~
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The category model

The Hofmann and Streicher 1998 model is as follows:

e Context extension ~»

e Contexts ~» Categories Grothendieck construction
e Empty context ~» o (ITz:A)~ (T'A)

e Types in context ~» Functors e Terms in context ~~
o (CHA:U)~ (A:T — Cat) Sections

e T'kFz:A)~ (' 5T.4)

Hence, we interpret:
(FA:U)~ (A:*— Cat) ~ a category A
(a: At Fa: B) ~ a section A — A.B ~ a functor A — B
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The hom-Form rule

FA:U
a:Ab: AFIldy(a,b) - U

ld-FOrRM

§
o

ummary
o]
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The hom-Form rule

FA:U

ld-FOrRM
a:Ab: AFIldy(a,b) - U

This is interpreted as the functor hom : A.A — Grpd.

IR

a——a

|

b——t

1R

Summary
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This is interpreted as the functor hom : A.A — Grpd.
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|

b——t
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The hom-Form rule

FA:U
a:Ab: AFhomy(a,b) : U

hom-FoORM

This is interpreted as the functor hom : A.A — Cat.

a—— d
b—— b
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The hom-Form rule

FA:U
a:A® b: AF homy(a,b): U

hom-ForM

This is interpreted as the functor hom : A°P.A — Cat.

g —,

[

[/ —
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The hom-Intro rule

FA:U
a: Al refl, i 1da(a,a)

Id-INTRO

§
o

ummary
o]
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The hom-Intro rule

FA:U

I[d-INTRO
a: Al refl, i 1da(a,a)

This is interpreted as the morphism refl below

(A.A).hom

A—r— AA

—2
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The hom-Intro rule

FA:U

I[d-INTRO
a: Al refl, i 1da(a,a)

This is interpreted as the morphism refl below

(A.A). hom =&

A—r— AA



Motivation Extending the groupoid model D2SFibs
oo ocoe 000000

The hom-Intro rule

FA:U

Id-INTRO
a: Al refl, 1 1da(a,a)

This is interpreted as the morphism refl below

A~ a—2-a
refl l<dom,cod> idal idg
A T) A A a T> CL/

Summary
oo
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The hom-Intro rule

FA:U

hom-INTRO
a: Al refl, : homy(a,a

This is interpreted as the morphism refl below

A~ a
V l(dom,cod> idal idg
a

A—— AA

Summary
oo
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2-sided fibrations

Definition (2SFib, Street 1974)

Let A: Cat and B : Cat. A 2-Sided Fibration (2SFib) from A to
B is a category C' equipped with the following data

C
. A span (p,q) from A to B.

. Evidence that p is an opfibration. p .

. Evidence that ¢ is a fibration.

A W N =

. Such that some coherences hold. A
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Dependent 2-sided fibrations

Definition (D2SFib)

Let A: Cat and B : A — Cat. A Dependent 2-Sided Fibration
(D2SFib) from A to B is a category C equipped with the following

data
1. A functor ¢ : C — A.B. C
2. Evidence that 74 o ¢ is an opfibration. .
3. Evidence that for each a : A, the
. . . A.B
restriction of ¢ to the fiber over a is a
A

fibration.

4. Such that some coherences hold. A
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Dependent 2-sided fibrations

Let A be a category. There is an equivalence of categories

Fibspiit(A) ~ Functor(A°P, Cat)
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Dependent 2-sided fibrations

Proposition

Let A be a category. There is an equivalence of categories

Fibspiit(A) ~ Functor(A°P, Cat)

Proposition

Let A and B be categories. There is an equivalence of categories

2SFibgyit(A, B) ~ Functor(A x B°P, Cat)
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Dependent 2-sided fibrations

Proposition

Let A be a category. There is an equivalence of categories

Fibspiit(A) =~ Functor(A°P, Cat)

Proposition

Let A be a category and B : A — Cat a functor. There is an
equivalence of categories

D2SFibgpit(A, B) ~ Functor(A.(op o B), Cat)
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A new context extension

In addition to

FA:U a:AkF Ba): U

Ctrx-EXT;
a:Ab: B(a)ctx
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A new context extension

In addition to
HFA:U a:AFB(a):U

Crx-EXT;
a:Ab: B(a)ctx

We now add

FA:U a:AF B(a): U
a:Ab:B(a)®FC(a,b): U

' ) o CTx-EXT,
a:Ab:B(a),c: C(a,b)ctx
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A new hom-intro rule

This lets us derive

FA:U a:AFA:U
b: A a:A®Fhomy(a,b): U

b:Aa:A,f o hom 4(a, b) ctx

CTx-EXTo
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A new hom-intro rule

This lets us derive

AU a:AFA:U
b: A a:A®Fhomy(a,b): U

T CTX-EXTo
b:A,a: A, f~ homy(a,b)ctx

Which let us make sense of our introduction rule

A—)

FA:U "
hom-INTRO re i<C°d7d0m>

a: At refl, | hom(a, a)

AT>A.A
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A new hom-elim rule

We now obtain a new elimination rule
rb:Aa: A,fz:fhomA(a,b) FD:U
I'a: AFd: Dla/b,refla/f]

o hom-EL1M
Ib:Aja: A, f~ homy(a,b) - jg: D
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A new hom-elim rule

We now obtain a new elimination rule
Fa: AFX: U
T,b:Aa: A, f Y homa(a,b),z: XPFD:U
T,a:A,z:XFEd: Dla/b,refly/f]

= T hom-ELIM
Ib:Aja: A f T homy(a,b),x: X Fj;: D
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Some solutions

The D2SFib approach gives some partial solutions:
e Terms are fully functorial in all variables:

a:AF Fa:B
b:A,a:A, f ¥ hom(a,b) - Ff : hom(Fa, Fb)

e The analog of a homotopy in HoTT
a:AF ¢, hom(Fa,Ga)

is interpreted as a natural transformation F' — G in the
model.

e We can prove Yoneda inside this theory!
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Summary

We start form the groupoid model and add:
o Categories as types.
e A hom-type constructor.
e The op type constructor.

e A new context extension, which recovers the arrow category.
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Future work

e Better understanding of D2SFibs

(D2S) factorization systems?

Stability under pullback?

How do they interact with II-types?

Characterization as a lax normal functor A.B — Prof?
Dependent n-sided fibrations?

o

O O O O

e Remove of explicit substitutions?

e How to write a typechecker for this?



Thank you!



The straightening operation

Given:

A : Cat
B:A— Cat
C: A (opoB)— Cat

The associated D2SFib is

A Z (opo C’))OP

opoB

We picture a morphism

(o, 8,0) : — (d', b, )
4




Dependent 2-sided fibrations

Definition (D2SFib)
Let A be a category and B : A — Cat a functor. A dependent
2-sided fibration (D2SFib) from A to B is a category C' equipped
with the following data
1. A functor q : C' — A.B, together with data specifying that for
each a : A, the restriction ja 3S below

Cla) = (AB)(@) — 1
| | |
C—F—AB—— A

is a fibration.
2. Evidence that p:=m40q: C — A is an opfibration.



Dependent 2-sided fibrations

Definition (D2SFib (cont.))

Such that

1. g is an opcartesian functor.

2. For each ao: pe — ain A and 8:b— ge in ¢
B(p(e)), the canonical morphism lq
A.B
e = (B(a)B) aue lm
given by any of the universal properties is an A

identity.



A lifting property

Proposition

Let X be a category. If ¢ : C' — A.B is a D25SFib, and we have a
commutative diagram as below, with G mapping chosen

opcartesian lifts to chosen opcartesian lifts, then there exists a lift
as making everything commute.

F

X—W>C

id_
X
(cod, dom)

X.

1

-
-
-
-
-
-
-

—

XL>

A.

B

TA

X— A

H
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