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The idea

1. We start with MLTT and the groupoid model.

2. Import the rules we see in the semantics back to the syntax,
e.g.:

◦ Add an op type constructor
◦ Add a hom type constructor
◦ Add a new context extension operation, capturing dependent

2-sided fibrations.
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The groupoid model

The Hofmann and Streicher 1998 model is as follows:

• Contexts ⇝ Groupoids

• Empty context ⇝ ⋆

• Types in context ⇝ Functors

• (Γ ⊢ A : U)⇝ (A : Γ → Grpd)

• Context extension ⇝
Grothendieck construction

• (Γ, x : A)⇝ (Γ.A)

• Terms in context ⇝
Sections

• (Γ ⊢ x : A)⇝ (Γ → Γ.A)

Hence, we interpret:

(· ⊢ A : U)⇝ (A : ⋆ → Grpd)⇝ a groupoid A

(a : A ⊢ Fa : B)⇝ a section A → A.B ⇝ a functor A → B



Motivation Extending the groupoid model D2SFibs Summary

The groupoid model

The Hofmann and Streicher 1998 model is as follows:

• Contexts ⇝ Groupoids

• Empty context ⇝ ⋆

• Types in context ⇝ Functors

• (Γ ⊢ A : U)⇝ (A : Γ → Grpd)

• Context extension ⇝
Grothendieck construction

• (Γ, x : A)⇝ (Γ.A)

• Terms in context ⇝
Sections

• (Γ ⊢ x : A)⇝ (Γ → Γ.A)

Hence, we interpret:

(· ⊢ A : U)⇝ (A : ⋆ → Grpd)⇝ a groupoid A

(a : A ⊢ Fa : B)⇝ a section A → A.B ⇝ a functor A → B



Motivation Extending the groupoid model D2SFibs Summary

The category model

The Hofmann and Streicher 1998 model is as follows:

• Contexts ⇝ Categories

• Empty context ⇝ ⋆

• Types in context ⇝ Functors

• (Γ ⊢ A : U)⇝ (A : Γ → Cat)

• Context extension ⇝
Grothendieck construction

• (Γ, x : A)⇝ (Γ.A)

• Terms in context ⇝
Sections

• (Γ ⊢ x : A)⇝ (Γ → Γ.A)

Hence, we interpret:

(· ⊢ A : U)⇝ (A : ⋆ → Cat)⇝ a category A

(a : A ⊢ Fa : B)⇝ a section A → A.B ⇝ a functor A → B
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The hom-Form rule

⊢ A : U
a : A, b : A ⊢ IdA(a, b) : U

Id-Form

This is interpreted as the functor hom : A.A → Grpd.

a a′

b b′

∼=

∼=
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The hom-Form rule

⊢ A : U
a : Aop, b : A ⊢ homA(a, b) : U

hom-Form

This is interpreted as the functor hom : Aop.A → Cat.

a a′

b b′
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The hom-Intro rule

⊢ A : U
a : A ⊢ refla : IdA(a, a)

Id-Intro

This is interpreted as the morphism refl below

(A.A). hom a a′

A A.A a a′

πrefl

∆ α

α

ida ida
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2-sided fibrations

Definition (2SFib, Street 1974)

Let A : Cat and B : Cat. A 2-Sided Fibration (2SFib) from A to
B is a category C equipped with the following data

1. A span (p, q) from A to B.

2. Evidence that p is an opfibration.

3. Evidence that q is a fibration.

4. Such that some coherences hold.

C

A B

p q
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Dependent 2-sided fibrations

Definition (D2SFib)

Let A : Cat and B : A → Cat. A Dependent 2-Sided Fibration
(D2SFib) from A to B is a category C equipped with the following
data

1. A functor q : C → A.B.

2. Evidence that πA ◦ q is an opfibration.

3. Evidence that for each a : A, the
restriction of q to the fiber over a is a
fibration.

4. Such that some coherences hold.

C

A.B

A

q

πA
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Dependent 2-sided fibrations

Proposition

Let A be a category. There is an equivalence of categories

Fibsplit(A) ≃ Functor(Aop,Cat)

Proposition

Let A and B be categories. There is an equivalence of categories

2SFibsplit(A,B) ≃ Functor(A×Bop,Cat)
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Dependent 2-sided fibrations

Proposition

Let A be a category. There is an equivalence of categories

Fibsplit(A) ≃ Functor(Aop,Cat)

Proposition

Let A be a category and B : A → Cat a functor. There is an
equivalence of categories

D2SFibsplit(A,B) ≃ Functor(A.(op ◦B),Cat)
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A new context extension

In addition to

⊢ A : U a : A ⊢ B(a) : U
a : A, b : B(a) ctx

Ctx-Ext1

We now add

⊢ A : U a : A ⊢ B(a) : U
a : A, b : B(a)op ⊢ C(a, b) : U

a : A, b : B(a), c
2f
: C(a, b) ctx

Ctx-Ext2
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A new hom-intro rule

This lets us derive

⊢ A : U a : A ⊢ A : U
b : A, a : Aop ⊢ homA(a, b) : U

b : A, a : A, f
2f
: homA(a, b) ctx

Ctx-Ext2

Which let us make sense of our introduction rule

⊢ A : U

a : A ⊢ refla
d
: hom(a, a)

hom-Intro

A→

A A.A

⟨cod,dom⟩refl

∆
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A new hom-elim rule

We now obtain a new elimination rule

Γ, b : A, a : A, f
2f
: homA(a, b) ⊢ D : U

Γ, a : A ⊢ d : D[a/b, reflA/f ]

Γ, b : A, a : A, f
2f
: homA(a, b) ⊢ jd : D

hom-Elim
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A new hom-elim rule

We now obtain a new elimination rule

Γ, a : A ⊢ X : U
Γ, b : A, a : A, f

2f
: homA(a, b), x : Xop ⊢ D : U

Γ, a : A, x : X ⊢ d
d
: D[a/b, reflA/f ]

Γ, b : A, a : A, f
2f
: homA(a, b), x : X ⊢ jd

2f
: D

hom-Elim
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Some solutions

The D2SFib approach gives some partial solutions:

• Terms are fully functorial in all variables:

a : A ⊢ Fa : B

b : A, a : A, f
2f
: hom(a, b) ⊢ Ff : hom(Fa, Fb)

• The analog of a homotopy in HoTT

a : A ⊢ φa
d
: hom(Fa,Ga)

is interpreted as a natural transformation F → G in the
model.

• We can prove Yoneda inside this theory!
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Summary

We start form the groupoid model and add:

• Categories as types.

• A hom-type constructor.

• The op type constructor.

• A new context extension, which recovers the arrow category.
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Future work

• Better understanding of D2SFibs

◦ (D2S) factorization systems?
◦ Stability under pullback?
◦ How do they interact with Π-types?
◦ Characterization as a lax normal functor A.B → Prof?
◦ Dependent n-sided fibrations?

• Remove of explicit substitutions?

• How to write a typechecker for this?



Thank you!



The straightening operation

Given:

A : Cat

B : A → Cat

C : A.(op ◦B) → Cat

The associated D2SFib is

A.
( ∑
op◦B

(op ◦ C)
)op

We picture a morphism

(α, β, θ) : (a, b, c) → (a′, b′, c′)
A a a′

B(a) B(a′)

C(a, b) C(a′, b′)

C(a′, B(α)b)

b

b′

c c′c′

B(α)b

C(α, idb)c

C(ida, β)c
′

α

β

θ



Dependent 2-sided fibrations

Definition (D2SFib)

Let A be a category and B : A → Cat a functor. A dependent
2-sided fibration (D2SFib) from A to B is a category C equipped
with the following data

1. A functor q : C → A.B, together with data specifying that for
each a : A, the restriction q|a as below

C(a) (A.B)(a) 1

C A.B A

q|a

⌟ ⌟
a

q πA

is a fibration.

2. Evidence that p :≡ πA ◦ q : C → A is an opfibration.



Dependent 2-sided fibrations

Definition (D2SFib (cont.))

Such that

1. q is an opcartesian functor.

2. For each α : pe → a in A and β : b → qe in
B(p(e)), the canonical morphism

α!β
∗e → (B(α)β)∗α!e

given by any of the universal properties is an
identity.

C

A.B

A

q

πA



A lifting property

Proposition

Let X be a category. If q : C → A.B is a D2SFib, and we have a
commutative diagram as below, with G mapping chosen
opcartesian lifts to chosen opcartesian lifts, then there exists a lift
as making everything commute.

X C

X→

X.X A.B

X A

F

id−

q

(cod, dom)

G

π1 πA

H
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