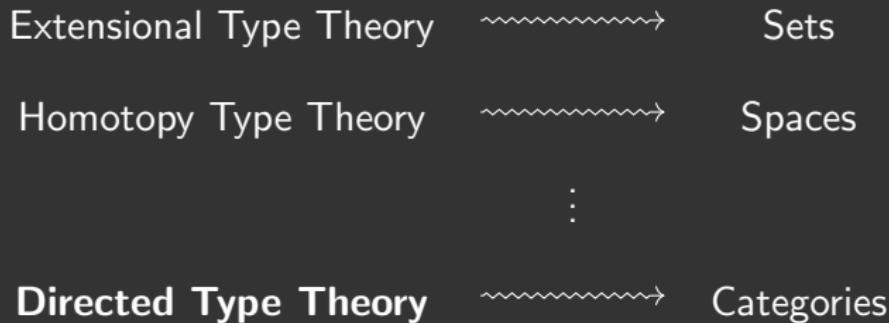


Dependent two-sided fibrations for directed type theory

Fernando Chu & Paige North

Motivation



The idea

1. We start with MLTT and the groupoid model.
2. Import the rules we see in the semantics back to the syntax,
e.g.:
 - o Add an op type constructor
 - o Add a hom type constructor
 - o Add a new context extension operation, capturing dependent
2-sided fibrations.

The idea

1. We start with MLTT and the groupoid model.
2. Import the rules we see in the semantics back to the syntax,
e.g.:
 - o Add an op type constructor
 - o Add a hom type constructor
 - o Add a new context extension operation, capturing dependent
2-sided fibrations.

The idea

1. We start with MLTT and the groupoid model.
2. Import the rules we see in the semantics back to the syntax,
e.g.:
 - o Add an **op** type constructor
 - o Add a **hom** type constructor
 - o Add a new context extension operation, capturing dependent
2-sided fibrations.

The idea

1. We start with MLTT and the groupoid model.
2. Import the rules we see in the semantics back to the syntax,
e.g.:
 - o Add an op type constructor
 - o Add a hom type constructor
 - o Add a new context extension operation, capturing dependent
2-sided fibrations.

The idea

1. We start with MLTT and the groupoid model.
2. Import the rules we see in the semantics back to the syntax,
e.g.:
 - o Add an op type constructor
 - o Add a hom type constructor
 - o Add a new context extension operation, capturing dependent
2-sided fibrations.

The groupoid model

The Hofmann and Streicher 1998 model is as follows:

- Contexts \rightsquigarrow Groupoids
 - Empty context $\rightsquigarrow \star$
- Types in context \rightsquigarrow Functors
 - $(\Gamma \vdash A : \mathcal{U}) \rightsquigarrow (A : \Gamma \rightarrow \text{Grpd})$
- Terms in context \rightsquigarrow Sections
 - $(\Gamma \vdash x : A) \rightsquigarrow (\Gamma \rightarrow \Gamma.A)$

Hence, we interpret:

$(\cdot \vdash A : \mathcal{U}) \rightsquigarrow (A : \star \rightarrow \text{Grpd}) \rightsquigarrow$ a groupoid A

$(a : A \vdash Fa : B) \rightsquigarrow$ a section $A \rightarrow A.B \rightsquigarrow$ a functor $A \rightarrow B$

The groupoid model

The Hofmann and Streicher 1998 model is as follows:

- Contexts \rightsquigarrow Groupoids
 - Empty context $\rightsquigarrow \star$
- Types in context \rightsquigarrow Functors
 - $(\Gamma \vdash A : \mathcal{U}) \rightsquigarrow (A : \Gamma \rightarrow \text{Grpd})$
- Terms in context \rightsquigarrow Sections
 - $(\Gamma \vdash x : A) \rightsquigarrow (\Gamma \rightarrow \Gamma.A)$

Hence, we interpret:

$(\cdot \vdash A : \mathcal{U}) \rightsquigarrow (A : \star \rightarrow \text{Grpd}) \rightsquigarrow$ a groupoid A

$(a : A \vdash Fa : B) \rightsquigarrow$ a section $A \rightarrow A.B \rightsquigarrow$ a functor $A \rightarrow B$

The category model

The Hofmann and Streicher 1998 model is as follows:

- Contexts \rightsquigarrow Categories
 - Empty context $\rightsquigarrow \star$
- Types in context \rightsquigarrow Functors
 - $(\Gamma \vdash A : \mathcal{U}) \rightsquigarrow (A : \Gamma \rightarrow \text{Cat})$
- Context extension \rightsquigarrow Grothendieck construction
 - $(\Gamma, x : A) \rightsquigarrow (\Gamma.A)$
- Terms in context \rightsquigarrow Sections
 - $(\Gamma \vdash x : A) \rightsquigarrow (\Gamma \rightarrow \Gamma.A)$

Hence, we interpret:

$(\cdot \vdash A : \mathcal{U}) \rightsquigarrow (A : \star \rightarrow \text{Cat}) \rightsquigarrow$ a category A

$(a : A \vdash Fa : B) \rightsquigarrow$ a section $A \rightarrow A.B \rightsquigarrow$ a functor $A \rightarrow B$

The hom-Form rule

$$\frac{\vdash A : \mathcal{U}}{a : A, b : A \vdash \text{Id}_A(a, b) : \mathcal{U}} \text{ Id-FORM}$$

This is interpreted as the functor $\text{hom} : A.A \rightarrow \text{Grpd}$.

$$\begin{array}{ccc} a & \xrightarrow{\cong} & a' \\ \downarrow & & \downarrow \\ b & \xrightarrow{\cong} & b' \end{array}$$

The hom-Form rule

$$\frac{\vdash A : \mathcal{U}}{a : A, b : A \vdash \text{Id}_A(a, b) : \mathcal{U}} \text{ Id-FORM}$$

This is interpreted as the functor $\text{hom} : A.A \rightarrow \text{Grpd}$.

$$\begin{array}{ccc} a & \xrightarrow{\cong} & a' \\ \downarrow & & \downarrow \\ b & \xrightarrow{\cong} & b' \end{array}$$

The hom-Form rule

$$\frac{\vdash A : \mathcal{U}}{a : A, b : A \vdash \text{Id}_A(a, b) : \mathcal{U}} \text{ Id-FORM}$$

This is interpreted as the functor $\text{hom} : A.A \rightarrow \text{Grpd}$.

$$\begin{array}{ccc} a & \xrightarrow{\cong} & a' \\ \downarrow & & \downarrow \\ b & \xrightarrow{\cong} & b' \end{array}$$

The hom-Form rule

$$\frac{\vdash A : \mathcal{U}}{a : A, b : A \vdash \text{hom}_A(a, b) : \mathcal{U}} \text{ hom-FORM}$$

This is interpreted as the functor $\text{hom} : A.A \rightarrow \text{Cat}$.

$$\begin{array}{ccc} a & \xrightarrow{\cong} & a' \\ \downarrow & & \downarrow \\ b & \xrightarrow{\cong} & b' \end{array}$$

The hom-Form rule

$$\frac{\vdash A : \mathcal{U}}{a : A^{\text{op}}, b : A \vdash \text{hom}_A(a, b) : \mathcal{U}} \text{ hom-FORM}$$

This is interpreted as the functor $\text{hom} : A^{\text{op}}.A \rightarrow \text{Cat}$.

$$\begin{array}{ccc} a & \longleftarrow & a' \\ \downarrow & & \downarrow \\ b & \longrightarrow & b' \end{array}$$

The hom-Intro rule

$$\frac{\vdash A : \mathcal{U}}{a : A \vdash \text{refl}_a : \text{Id}_A(a, a)} \text{ Id-INTRO}$$

This is interpreted as the morphism `refl` below

$$\begin{array}{ccc} (A.A).\text{hom} & & a \xrightarrow{\alpha} a' \\ \text{refl} \nearrow & \downarrow \pi & \text{id}_a \downarrow \\ A & \xrightarrow{\Delta} & a \xrightarrow{\alpha} a' \end{array}$$

The hom-Intro rule

$$\frac{\vdash A : \mathcal{U}}{a : A \vdash \text{refl}_a : \text{Id}_A(a, a)} \text{ Id-INTRO}$$

This is interpreted as the morphism `refl` below

$$\begin{array}{ccc} (A.A).\text{hom} & & a \xrightarrow{\alpha} a' \\ \text{refl} \nearrow & \downarrow \pi & \text{id}_a \downarrow \\ A & \xrightarrow{\Delta} & a \xrightarrow{\alpha} a' \end{array}$$

The hom-Intro rule

$$\frac{\vdash A : \mathcal{U}}{a : A \vdash \text{refl}_a : \text{Id}_A(a, a)} \text{ Id-INTRO}$$

This is interpreted as the morphism `refl` below

$$\begin{array}{ccc} (A.A). \text{hom} & & a \xrightarrow{\alpha} a' \\ \text{refl} \nearrow & \downarrow \pi & \text{id}_a \downarrow \\ A \xrightarrow[\Delta]{} A.A & & a \xrightarrow{\alpha} a' \end{array}$$

The hom-Intro rule

$$\frac{\vdash A : \mathcal{U}}{a : A \vdash \text{refl}_a : \text{Id}_A(a, a)} \text{ Id-INTRO}$$

This is interpreted as the morphism `refl` below

$$\begin{array}{ccc} & A \xrightarrow{\quad} & \\ \text{refl} \nearrow & \downarrow \langle \text{dom}, \text{cod} \rangle & \\ A \xrightarrow{\Delta} A.A & & \end{array} \quad \begin{array}{ccc} a \xrightarrow{\alpha} a' & & \\ \text{id}_a \downarrow & & \downarrow \text{id}_a \\ a \xrightarrow{\alpha} a' & & \end{array}$$

The hom-Intro rule

$$\frac{\vdash A : \mathcal{U}}{a : A \vdash \text{refl}_a : \text{Id}_A(a, a)} \text{ Id-INTRO}$$

This is interpreted as the morphism `refl` below

$$\begin{array}{ccc} & A \xrightarrow{\quad} & \\ \text{refl} \nearrow & \downarrow \langle \text{dom}, \text{cod} \rangle & \\ A \xrightarrow{\Delta} A.A & & \end{array} \quad \begin{array}{ccc} a \xrightarrow{\alpha} a' & & \\ \text{id}_a \downarrow & & \downarrow \text{id}_a \\ a \xrightarrow{\alpha} a' & & \end{array}$$

The hom-Intro rule

$$\frac{\vdash A : \mathcal{U}}{a : A \vdash \text{refl}_a : \text{Id}_A(a, a)} \text{ Id-INTRO}$$

This is interpreted as the morphism `refl` below

$$\begin{array}{ccc} & A \xrightarrow{\quad} & \\ \text{refl} \nearrow & \downarrow \langle \text{dom}, \text{cod} \rangle & \\ A \xrightarrow{\Delta} A.A & & \end{array} \quad \begin{array}{ccc} a \xrightarrow{\alpha} a' & & \\ \text{id}_a \downarrow & & \downarrow \text{id}_a \\ a \xrightarrow{\alpha} a' & & \end{array}$$

The hom-Intro rule

$$\frac{\vdash A : \mathcal{U}}{a : A \vdash \text{refl}_a : \text{hom}_A(a, a)} \text{ hom-INTRO}$$

This is interpreted as the morphism `refl` below

$$\begin{array}{ccc} & A \xrightarrow{\quad} & \\ \text{refl} \nearrow & \downarrow \langle \text{dom}, \text{cod} \rangle & \\ A \xrightarrow{\Delta} A.A & & \end{array} \quad \begin{array}{ccc} a \xrightarrow{\alpha} a' & & \\ \text{id}_a \downarrow & & \downarrow \text{id}_a \\ a \xrightarrow{\alpha} a' & & \end{array}$$

2-sided fibrations

Definition (2SFib, Street 1974)

Let $A : \text{Cat}$ and $B : \text{Cat}$. A **2-Sided Fibration** (2SFib) from A to B is a category C equipped with the following data

1. A span (p, q) from A to B .
2. Evidence that p is an opfibration.
3. Evidence that q is a fibration.
4. Such that some coherences hold.

2-sided fibrations

Definition (2SFib, Street 1974)

Let $A : \text{Cat}$ and $B : \text{Cat}$. A **2-Sided Fibration** (2SFib) from A to B is a category C equipped with the following data

1. A span (p, q) from A to B .
2. Evidence that p is an opfibration.
3. Evidence that q is a fibration.
4. Such that some coherences hold.

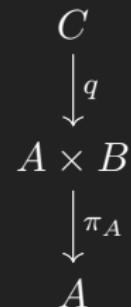


2-sided fibrations

Definition (2SFib, Street 1974)

Let $A : \text{Cat}$ and $B : \text{Cat}$. A **2-Sided Fibration** (2SFib) from A to B is a category C equipped with the following data

1. A functor $q : C \rightarrow A \times B$.
2. Evidence that $\pi_A \circ q$ is an opfibration.
3. Evidence that for each $a : A$, the restriction of q to the fiber over a is a fibration.
4. Such that some coherences hold.

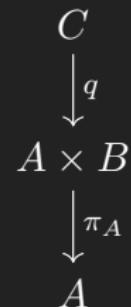


2-sided fibrations

Definition (2SFib, Street 1974)

Let $A : \text{Cat}$ and $B : \text{Cat}$. A **2-Sided Fibration** (2SFib) from A to B is a category C equipped with the following data

1. A functor $q : C \rightarrow A \times B$.
2. Evidence that $\pi_A \circ q$ is an opfibration.
3. Evidence that for each $a : A$, the restriction of q to the fiber over a is a fibration.
4. Such that some coherences hold.



Dependent 2-sided fibrations

Definition (D2SFib)

Let $A : \text{Cat}$ and $B : A \rightarrow \text{Cat}$. A **Dependent 2-Sided Fibration** (D2SFib) from A to B is a category C equipped with the following data

1. A functor $q : C \rightarrow A.B$.
2. Evidence that $\pi_A \circ q$ is an opfibration.
3. Evidence that for each $a : A$, the restriction of q to the fiber over a is a fibration.
4. Such that some coherences hold.

$$\begin{array}{ccc} C & & \\ \downarrow q & & \\ A.B & & \\ \downarrow \pi_A & & \\ A & & \end{array}$$

Dependent 2-sided fibrations

Proposition

Let A be a category. There is an equivalence of categories

$$\text{Fib}_{\text{split}}(A) \simeq \text{Functor}(A^{\text{op}}, \text{Cat})$$

Proposition

Let A and B be categories. There is an equivalence of categories

$$2\text{SFib}_{\text{split}}(A, B) \simeq \text{Functor}(A \times B^{\text{op}}, \text{Cat})$$

Dependent 2-sided fibrations

Proposition

Let A be a category. There is an equivalence of categories

$$\text{Fib}_{\text{split}}(A) \simeq \text{Functor}(A^{\text{op}}, \text{Cat})$$

Proposition

Let A and B be categories. There is an equivalence of categories

$$2\text{SFib}_{\text{split}}(A, B) \simeq \text{Functor}(A \times B^{\text{op}}, \text{Cat})$$

Dependent 2-sided fibrations

Proposition

Let A be a category. There is an equivalence of categories

$$\text{Fib}_{\text{split}}(A) \simeq \text{Functor}(A^{\text{op}}, \text{Cat})$$

Proposition

Let A be a category and $B : A \rightarrow \text{Cat}$ a functor. There is an equivalence of categories

$$\text{D2SFib}_{\text{split}}(A, B) \simeq \text{Functor}(A.(\text{op} \circ B), \text{Cat})$$

A new context extension

In addition to

$$\frac{\vdash A : \mathcal{U} \quad a : A \vdash B(a) : \mathcal{U}}{a : A, b : B(a) \text{ ctx}} \text{ CTX-EXT}_1$$

We now add

$$\frac{\vdash A : \mathcal{U} \quad a : A \vdash B(a) : \mathcal{U} \quad a : A, b : B(a)^{\text{op}} \vdash C(a, b) : \mathcal{U}}{a : A, b : B(a), c \stackrel{\text{2f}}{\vdash} C(a, b) \text{ ctx}} \text{ CTX-EXT}_2$$

A new context extension

In addition to

$$\frac{\vdash A : \mathcal{U} \quad a : A \vdash B(a) : \mathcal{U}}{a : A, b : B(a) \text{ ctx}} \text{ CTX-EXT}_1$$

We now add

$$\frac{\vdash A : \mathcal{U} \quad a : A \vdash B(a) : \mathcal{U} \quad a : A, b : B(a)^{\text{op}} \vdash C(a, b) : \mathcal{U}}{a : A, b : B(a), c \stackrel{2\text{f}}{\vdash} C(a, b) \text{ ctx}} \text{ CTX-EXT}_2$$

A new hom-intro rule

This lets us derive

$$\frac{\vdash A : \mathcal{U} \quad a : A \vdash A : \mathcal{U} \quad b : A, a : A^{\text{op}} \vdash \text{hom}_A(a, b) : \mathcal{U}}{b : A, a : A, f \stackrel{\text{2f}}{\vdash} \text{hom}_A(a, b) \text{ ctx}} \text{ CTX-EXT}_2$$

Which let us make sense of our introduction rule

$$\frac{\vdash A : \mathcal{U}}{a : A \vdash \text{refl}_a \stackrel{\text{d}}{\vdash} \text{hom}(a, a)} \text{ hom-INTRO} \quad \begin{array}{ccc} & A^{\rightarrow} & \\ & \nearrow \text{refl} & \downarrow \langle \text{cod}, \text{dom} \rangle \\ A & \xrightarrow[\Delta]{} & A.A \end{array}$$

A new hom-intro rule

This lets us derive

$$\frac{\vdash A : \mathcal{U} \quad a : A \vdash A : \mathcal{U} \quad b : A, a : A^{\text{op}} \vdash \text{hom}_A(a, b) : \mathcal{U}}{b : A, a : A, f \stackrel{\text{2f}}{\vdash} \text{hom}_A(a, b) \text{ ctx}} \text{ CTX-EXT}_2$$

Which let us make sense of our introduction rule

$$\frac{\vdash A : \mathcal{U}}{a : A \vdash \text{refl}_a \stackrel{\text{d}}{\vdash} \text{hom}(a, a)} \text{ hom-INTRO} \quad A \xrightarrow[\Delta]{} A.A \quad \begin{array}{c} A^{\rightarrow} \\ \nearrow \text{refl} \quad \downarrow \langle \text{cod}, \text{dom} \rangle \\ A \end{array}$$

A new hom-elim rule

We now obtain a new elimination rule

$$\frac{\Gamma, b : A, a : A, f \stackrel{2\mathfrak{f}}{\vdash} \text{hom}_A(a, b) \vdash D : \mathcal{U} \quad \Gamma, a : A \vdash d : D[a/b, \text{refl}_A/f]}{\Gamma, b : A, a : A, f \stackrel{2\mathfrak{f}}{\vdash} \text{hom}_A(a, b) \vdash j_d : D} \text{ hom-ELIM}$$

A new hom-elim rule

We now obtain a new elimination rule

$$\frac{\Gamma, a : A \vdash X : \mathcal{U} \quad \Gamma, b : A, a : A, f \stackrel{2\mathfrak{f}}{\vdash} \text{hom}_A(a, b), x : X^{\text{op}} \vdash D : \mathcal{U} \quad \Gamma, a : A, x : X \vdash d \stackrel{^\mathfrak{d}}{\vdash} D[a/b, \text{refl}_A/f]}{\Gamma, b : A, a : A, f \stackrel{2\mathfrak{f}}{\vdash} \text{hom}_A(a, b), x : X \vdash j_d \stackrel{2\mathfrak{f}}{\vdash} D} \text{ hom-ELIM}$$

Some solutions

The D2SFib approach gives some partial solutions:

- Terms are fully functorial in all variables:

$$\frac{a : A \vdash Fa : B}{b : A, a : A, f \stackrel{2\mathfrak{f}}{\vdash} \text{hom}(a, b) \vdash Ff : \text{hom}(Fa, Fb)}$$

- The analog of a homotopy in HoTT

$$a : A \vdash \varphi_a \stackrel{\mathfrak{d}}{\vdash} \text{hom}(Fa, Ga)$$

is interpreted as a natural transformation $F \rightarrow G$ in the model.

- We can prove Yoneda inside this theory!

Summary

We start from the groupoid model and add:

- Categories as types.
- A hom-type constructor.
- The op type constructor.
- A new context extension, which recovers the arrow category.

Future work

- Better understanding of D2SFibs
 - (D2S) factorization systems?
 - Stability under pullback?
 - How do they interact with Π -types?
 - Characterization as a lax normal functor $A.B \rightarrow \text{Prof}$?
 - Dependent n -sided fibrations?
- Remove of explicit substitutions?
- How to write a typechecker for this?

Thank you!

The straightening operation

Given:

$$A : \text{Cat}$$

$$B : A \rightarrow \text{Cat}$$

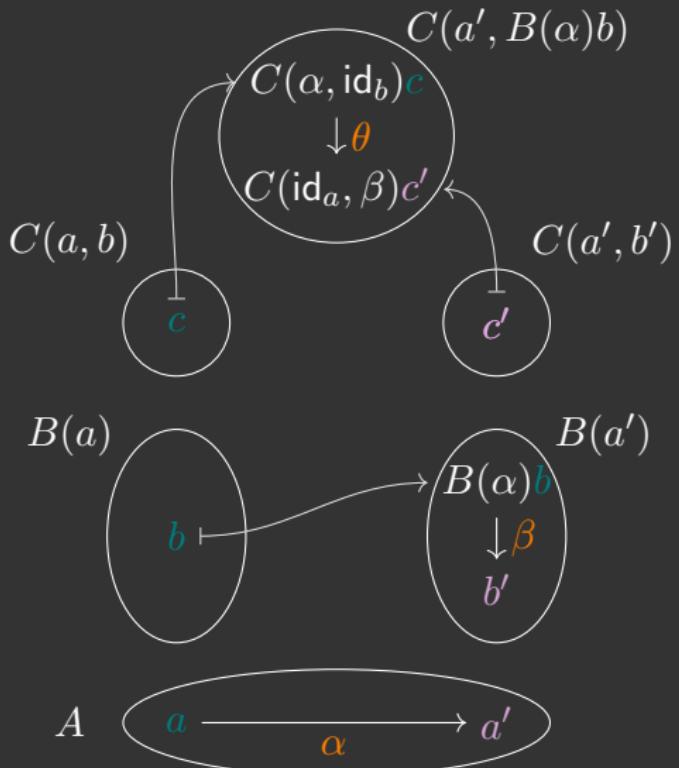
$$C : A.(\text{op} \circ B) \rightarrow \text{Cat}$$

The associated D2SFib is

$$A. \left(\sum_{\text{op} \circ B} (\text{op} \circ C) \right)^{\text{op}}$$

We picture a morphism

$$(\alpha, \beta, \theta) : (a, b, c) \rightarrow (a', b', c')$$



Dependent 2-sided fibrations

Definition (D2SFib)

Let A be a category and $B : A \rightarrow \text{Cat}$ a functor. A **dependent 2-sided fibration** (D2SFib) from A to B is a category C equipped with the following data

1. A functor $q : C \rightarrow A.B$, together with data specifying that for each $a : A$, the restriction $q|_a$ as below

$$\begin{array}{ccccc} C(a) & \xrightarrow{q|_a} & (A.B)(a) & \longrightarrow & 1 \\ \downarrow & \lrcorner & \downarrow & \lrcorner & \downarrow a \\ C & \xrightarrow{q} & A.B & \xrightarrow{\pi_A} & A \end{array}$$

is a fibration.

2. Evidence that $p := \pi_A \circ q : C \rightarrow A$ is an opfibration.

Dependent 2-sided fibrations

Definition (D2SFib (cont.))

Such that

1. q is an opcartesian functor.
2. For each $\alpha : pe \rightarrow a$ in A and $\beta : b \rightarrow qe$ in $B(p(e))$, the canonical morphism

$$\alpha_! \beta^* e \rightarrow (B(\alpha)\beta)^* \alpha_! e$$

given by any of the universal properties is an identity.

$$\begin{array}{ccc} C & & \\ \downarrow q & & \\ A.B & & \\ \downarrow \pi_A & & \\ A & & \end{array}$$

A lifting property

Proposition

Let X be a category. If $q : C \rightarrow A.B$ is a D2SFib, and we have a commutative diagram as below, with G mapping chosen opcartesian lifts to chosen opcartesian lifts, then there exists a lift as making everything commute.

$$\begin{array}{ccc} X & \xrightarrow{F} & C \\ \downarrow \text{id}_- & \nearrow \text{dashed} & \downarrow q \\ X & \xrightarrow{\quad} & \\ \downarrow (\text{cod}, \text{dom}) & & \downarrow \\ X.X & \xrightarrow{G} & A.B \\ \downarrow \pi_1 & & \downarrow \pi_A \\ X & \xrightarrow{H} & A \end{array}$$

References

- Hofmann, Martin and Thomas Streicher (1998). “The groupoid interpretation of type theory”. In: *Twenty-five years of constructive type theory (Venice, 1995)* 36, pp. 83–111.
- Street, Ross (1974). “Fibrations and Yoneda’s lemma in a 2-category”. In: *Category Seminar*. Ed. by Gregory M. Kelly. Vol. 420. Series Title: Lecture Notes in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 104–133. ISBN: 978-3-540-06966-9 978-3-540-37270-7. DOI: 10.1007/BFb0063102.