A directed homotopy type theory for 1-categories

F. R. Chu¹ É. Mangel² P. R. North¹

¹Utrecht University

²ÉNS Paris-Saclay

TYPES, June 2024

Table of Contents

- Motivation
- 2 The idea
- 3 The syntax and semantics (sketch)
- 4 Summary and future work

Motivation

Extensional Type Theory	······	Sets
Modal Type Theory	~~~~~ ~	Modalities
Homotopy Type Theory	~~~~~	Spaces
	:	
Directed Homotopy Type Theory	~~~~~ ~	Categories

Some criteria for a directed HoTT

Syntax

Extend HoTT:

- There is a type $hom_A(a, b)$.
- We can do transport along morphisms in it.
- Be strong enough to prove classic theorems internally, e.g. the Yoneda lemma.

Semantics

Extend the groupoid model:

- Types in the empty context are categories.
- The hom type is the hom-set.
- Functions $A \rightarrow B$ are functors $A \rightarrow B$.

Some criteria for a directed HoTT

Syntax

Extend HoTT:

- There is a type $hom_A(a, b)$.
- We can do transport along morphisms in it.
- Be strong enough to prove classic theorems internally, e.g. the Yoneda lemma.

Semantics

Extend the groupoid model:

- Types in the empty context are categories.
- The hom type is the hom-set.
- Functions $A \rightarrow B$ are functors $A \rightarrow B$.

Our theory satisfies these!

• We start with MLTT.

We start with MLTT.

2 Add a hom type constructor, as in North [1].

- We start with MLTT.
- ② Add a hom type constructor, as in North [1].
- **3** Annotate the variances, $x \stackrel{\omega}{:} X$ with $\omega \in \{+, -, \circ\}$, as in Nuyts [2].

- We start with MLTT.
- ② Add a hom type constructor, as in North [1].
- **3** Annotate the variances, $x \stackrel{\omega}{:} X$ with $\omega \in \{+, -, \circ\}$, as in Nuyts [2].
- Import the rules we see in the semantics back to the syntax.

$$\frac{\Gamma \vdash A : \mathcal{U}_k \qquad \Gamma \vdash a : A \qquad \Gamma \vdash b : A}{\Gamma \vdash \mathsf{hom}_A(a,b) : \mathcal{U}_k} \mathsf{hom}\text{-}\mathsf{FORM}$$

$$\frac{\Gamma \vdash A : \mathcal{U}_k \qquad \Gamma \vdash a \stackrel{\cdot}{:} A \qquad \Gamma \vdash b : A}{\Gamma \vdash \mathsf{hom}_A(a,b) : \mathcal{U}_k} \mathsf{hom}\text{-}\mathsf{FORM}$$

$$\frac{\Gamma \vdash A : \mathcal{U}_k \qquad \Gamma \vdash a \stackrel{\cdot}{:} A \qquad \Gamma \vdash b \stackrel{+}{:} A}{\Gamma \vdash \mathsf{hom}_A(a,b) : \mathcal{U}_k} \mathsf{hom}\text{-}\mathsf{FORM}$$

$$\frac{\Gamma \vdash A \stackrel{+}{:} \mathcal{U}_{k} \qquad \Gamma \vdash a \stackrel{-}{:} A \qquad \Gamma \vdash b \stackrel{+}{:} A}{\Gamma \vdash \mathsf{hom}_{A}(a,b) : \mathcal{U}_{k}} \mathsf{hom}\text{-}\mathsf{FORM}$$

$$\frac{\Gamma \vdash A \stackrel{+}{:} \mathcal{U}_{k} \qquad \Gamma \vdash a \stackrel{-}{:} A \qquad \Gamma \vdash b \stackrel{+}{:} A}{\Gamma \vdash \mathsf{hom}_{A}(a,b) \stackrel{+}{:} \mathcal{U}_{k}} \mathsf{hom}\text{-}\mathsf{FORM}$$

$$\frac{\Gamma^{\ell} \vdash A \stackrel{:}{:} \mathcal{U}_{k} \qquad \Gamma^{\ell} \vdash a \stackrel{:}{:} A \qquad \Gamma^{\ell} \vdash b \stackrel{:}{:} A}{\Gamma^{\ell} \vdash \mathsf{hom}_{A}(a,b) \stackrel{:}{:} \mathcal{U}_{k}} \mathsf{hom}\text{-}\mathsf{FORM}$$

$$\frac{\Gamma^{\ell} \vdash A \stackrel{\cdot}{:} \mathcal{U}_{k} \qquad \Gamma^{\ell} \vdash a \stackrel{\cdot}{:} A \qquad \Gamma^{\ell} \vdash b \stackrel{\cdot}{:} A}{\Gamma^{\ell} \vdash \mathsf{hom}_{A}(a,b) \stackrel{\cdot}{:} \mathcal{U}_{k}} \mathsf{hom}\text{-}\mathsf{FORM}$$

$$\frac{\Gamma \vdash A : \mathcal{U}_k \qquad \Gamma \vdash a : A}{\Gamma \vdash 1_a : \mathsf{hom}_A(a, a)} \; \mathsf{hom\text{-}INTRO}$$

$$\frac{\Gamma^{\ell} \vdash A \stackrel{:}{:} \mathcal{U}_{k} \qquad \Gamma^{\ell} \vdash a \stackrel{:}{:} A \qquad \Gamma^{\ell} \vdash b \stackrel{:}{:} A}{\Gamma^{\ell} \vdash \mathsf{hom}_{A}(a,b) \stackrel{:}{:} \mathcal{U}_{k}} \mathsf{hom}\text{-}\mathsf{FORM}$$

$$\frac{\Gamma^{\ell} \vdash A \stackrel{\cdot}{:} \mathcal{U}_{k} \qquad \Gamma^{\ell} \vdash a \stackrel{\circ}{:} A}{\Gamma^{\ell} \vdash 1_{a} \stackrel{\circ}{:} \mathsf{hom}_{A}(a, a)} \mathsf{hom}\text{-}\mathsf{INTRO}$$

$$\frac{\Gamma^{\ell} \vdash A \stackrel{\cdot}{:} \mathcal{U}_{k} \qquad \Gamma^{\ell} \vdash a \stackrel{\cdot}{:} A \qquad \Gamma^{\ell} \vdash b \stackrel{\cdot}{:} A}{\Gamma^{\ell} \vdash \mathsf{hom}_{A}(a,b) \stackrel{\cdot}{:} \mathcal{U}_{k}} \mathsf{hom}\text{-}\mathsf{FORM}$$

$$\frac{\Gamma^{\ell} \vdash A \stackrel{:}{:} \mathcal{U}_{k} \qquad \Gamma^{\ell} \vdash a \stackrel{\circ}{:} A}{\Gamma^{\ell} \vdash 1_{a} \stackrel{\circ}{:} \mathsf{hom}_{A}(a, a)} \mathsf{hom}\text{-}\mathsf{INTRO}$$

$$\frac{\Gamma^{\ell}, x \stackrel{\circ}{:} A, y \stackrel{\dagger}{:} A, \varphi \stackrel{k}{:} \mathsf{hom}_{A}(x, y) \vdash D(x, y, \varphi) \stackrel{\dagger}{:} \mathcal{U}_{k}}{\Gamma^{\ell}, x \stackrel{\circ}{:} A \vdash d(x) \stackrel{\omega}{:} D(x, x, 1_{x})} \xrightarrow{\Gamma^{\ell}, x \stackrel{\circ}{:} A, y \stackrel{\dagger}{:} A, \varphi \stackrel{k}{:} \mathsf{hom}_{A}(x, y) \vdash j_{d}(x, y, \varphi) \stackrel{\omega}{:} D(x, y, \varphi)} \\$$

$$\underline{\Gamma^{\ell}, x \stackrel{\circ}{:} A, y \stackrel{\dagger}{:} A, \varphi \stackrel{k}{:} \mathsf{hom}_{A}(x, y) \vdash j_{d}(x, y, \varphi) \stackrel{\omega}{:} D(x, y, \varphi)} \\$$
ELIM-L

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Orientations

We interpret the orientations $\{+,-,\circ\}$ as endofunctors Cat \to Cat.

They have an induced order:

$$+ \qquad - \qquad \text{id} \qquad (-)^{\text{op}}$$

And an induced multiplication:

•	0	_	+
0	0	0	0
_	0	+	_
+	0	_	+

The interpretation

- Contexts → Categories
- Empty context → ★
- Types in context → Functors

$$\blacktriangleright \ \left(\mathsf{\Gamma}^\ell \vdash \mathsf{A} \stackrel{\circ}{:} \mathcal{U} \right) \rightsquigarrow \left(\mathsf{\Gamma}^\ell \to \mathsf{Cat}^\mathsf{core} \right)$$

$$\qquad \qquad \left(\mathsf{\Gamma}^\ell \vdash \mathsf{A} \stackrel{\scriptscriptstyle{+}}{:} \mathcal{U} \right) \rightsquigarrow \left(\mathsf{\Gamma}^\ell \to \mathsf{Cat} \right)$$

$$\begin{array}{c} \blacktriangleright \left(\Gamma^{\ell} \vdash A \stackrel{\scriptscriptstyle +}{:} \mathcal{U} \right) \leadsto \left(\Gamma^{\ell} \to \mathsf{Cat} \right) \\ \blacktriangleright \left(\Gamma^{\ell} \vdash A \stackrel{\scriptscriptstyle -}{:} \mathcal{U} \right) \leadsto \left(\Gamma^{\ell} \to \mathsf{Cat}^{\mathsf{op}} \right) \end{array}$$

 $\bullet \left(\Gamma^{\ell}, x \stackrel{\omega}{:} A \right) \leadsto \left(\Gamma^{\ell}.(\omega \circ A) \right)$

$$\begin{array}{c} \bullet \ \left(\Gamma^{\ell} \vdash x \stackrel{\omega}{:} A \right) \leadsto \\ \text{Sections} \ \left(\Gamma^{\ell} \to \Gamma^{\ell}. (\omega \circ A) \right) \\ \text{Equivalently, } \star \implies (\omega \circ A) \end{array}$$

Hence, a closed type $\cdot \vdash A \stackrel{\scriptscriptstyle +}{:} \mathcal{U}$ is interpreted as a category A, and a judgement $a \stackrel{+}{:} A \vdash b \stackrel{+}{:} B$ is interpreted as a functor $A \rightarrow B$.

Weakening

We can get more structure from the orientations, we can weaken:

$$\frac{\ell \leq m \qquad \Gamma^m \vdash t \stackrel{\omega}{:} A}{\Gamma^\ell \vdash t \stackrel{\omega}{:} A} \text{ Ort-weak-L}$$

Weakening

Similarly, we can weaken on the right by postcomposing:

$$\frac{\omega \leq \alpha \qquad \Gamma^{\ell} \vdash t \stackrel{\omega}{:} A}{\Gamma^{\ell} \vdash t \stackrel{\alpha}{:} A} \text{ Ort-weak-R}$$

Transmutation

We can switch all orientations.

$$\frac{\Gamma^{\ell} \vdash x \overset{m}{:} X}{\Gamma^{\ell \cdot \omega} \vdash x \overset{m \cdot \omega}{:} X} \text{Transmut}$$

In particular, we can make all annotations o.

The hom constructor

We recall the rules

$$\frac{\Gamma^{\ell} \vdash A \stackrel{:}{:} \mathcal{U}_{k} \qquad \Gamma^{\ell} \vdash a \stackrel{:}{:} A \qquad \Gamma^{\ell} \vdash b \stackrel{:}{:} A}{\Gamma^{\ell} \vdash \text{hom}_{A}(a, b) \stackrel{!}{:} \mathcal{U}_{k}} \text{hom-form}$$

$$\frac{\Gamma^{\ell} \vdash A \stackrel{:}{:} \mathcal{U}_{k} \qquad \Gamma^{\ell} \vdash a \stackrel{\circ}{:} A}{\Gamma^{\ell} \vdash 1_{a} \stackrel{\circ}{:} \text{hom}_{A}(a, a)} \text{hom-intro}$$

We now interpret

$$a\stackrel{-}{:}A,b\stackrel{+}{:}A\vdash \mathsf{hom}_A(a,b)\stackrel{+}{:}\mathcal{U}_k \qquad \mathsf{hom}:A^\mathsf{op}\times A\to \mathit{Cat}$$

$$a\stackrel{\circ}{:}A\vdash 1_a\stackrel{\circ}{:}\mathsf{hom}_A(a,a) \qquad \mathsf{1}_a:A^\mathsf{core}\to \mathsf{hom}(a,a)^\mathsf{core}$$

The hom constructor

We recall the rules

$$\frac{\Gamma^{\ell} \vdash A \stackrel{:}{:} \mathcal{U}_{k} \qquad \Gamma^{\ell} \vdash a \stackrel{:}{:} A \qquad \Gamma^{\ell} \vdash b \stackrel{:}{:} A}{\Gamma^{\ell} \vdash \text{hom}_{A}(a, b) \stackrel{!}{:} \mathcal{U}_{k}} \text{hom-form}$$

$$\frac{\Gamma^{\ell} \vdash A \stackrel{:}{:} \mathcal{U}_{k} \qquad \Gamma^{\ell} \vdash a \stackrel{\circ}{:} A}{\Gamma^{\ell} \vdash 1_{a} \stackrel{\circ}{:} \text{hom}_{A}(a, a)} \text{hom-intro}$$

We now interpret

$$a \stackrel{\cdot}{:} A, b \stackrel{+}{:} A \vdash \mathsf{hom}_A(a, b) \stackrel{+}{:} \mathcal{U}_k \qquad \mathsf{hom} : A^\mathsf{op} \times A \to Cat$$

$$a \stackrel{\circ}{:} A \vdash 1_a \stackrel{\circ}{:} \mathsf{hom}_A(a, a) \qquad \mathsf{1}_a : A^\mathsf{core} \to \mathsf{hom}(a, a)$$

And some other types

We also have some other type constructors

- Sigma types
- Pi types
- An op type constructor
- A core type constructor
- Identity types

Their rules are adapted to take in account variance.

Example: Product types

There are now 9 product types:

$$\frac{\Gamma^{\ell} \vdash A \stackrel{+}{:} \mathcal{U}_{k} \qquad \Gamma^{\ell} \vdash B \stackrel{+}{:} \mathcal{U}_{k}}{\Gamma^{\ell} \vdash A^{\omega_{1}} \times B^{\omega_{2}} \stackrel{+}{:} \mathcal{U}_{k}} \times \text{-FORM}$$

$$\frac{\Gamma^{\ell} \vdash a \stackrel{\omega_{1}}{:} A \qquad \Gamma^{\ell} \vdash b \stackrel{\omega_{2}}{:} B}{\Gamma^{\ell} \vdash (a, b) \stackrel{+}{:} A^{\omega_{1}} \times B^{\omega_{2}}} \times \text{-INTRO}$$

Expressivity

- Using these, and considering isovariant contexts Γ° , we can develop the usual theory of HoTT.
- In particular, we have homotopies and equivalences as usual.
- We can reason internally about the hom-types, e.g.:
 - Reflexivity, composition, but not symmetry.
 - Functoriality.
 - Yoneda¹.

Summary

- We annotate variances in variables $x \stackrel{\circ}{:} X$.
- We internalize rules that we see in the semantics:
 - We add structural rules concerning this variance.
 - ▶ All other rules are adjusted in terms of this variance.
- From these rules, we can use HoTT as usual as well as reason about 1-categories.

Future work

- What's the relationship between isomorphisms and equality?
- Are $(\infty, 1)$ -categories a model?
- What Directed Higher Inductive Types can be added?
- How much category theory can be proved internally?

Thank you!

References

- [1] Paige Randall North. "Towards a directed homotopy type theory". In: *Electronic Notes in Theoretical Computer Science* 347 (2019), pp. 223–239.
- [2] Andreas Nuyts. "Towards a directed homotopy type theory based on 4 kinds of variance". In: *Mém. de mast. Katholieke Universiteit Leuven* (2015).