Chapter 5. Induction - Exercises
module Chapter5.Exercises where open import Chapter5.Book public -- Exercise 5.4. ind𝟚 : (E : 𝟚 → 𝒰 𝒾) → (E ₀ × E ₁) → ((b : 𝟚) → E b) ind𝟚 E (e₀ , e₁) ₀ = e₀ ind𝟚 E (e₀ , e₁) ₁ = e₁ 𝟚-ind-isequiv : (E : 𝟚 → 𝒰 𝒾) → isEquiv (ind𝟚 E) 𝟚-ind-isequiv E = invs⇒equivs (ind𝟚 E) (map⁻¹ , ε , η) where map⁻¹ = λ f → (f ₀ , f ₁) ε : (ind𝟚 E) ∘ map⁻¹ ∼ id ε f = funext (ind𝟚 (λ - → (ind𝟚 E ∘ map⁻¹) f - ≡ f -) (refl _ , refl _)) η : map⁻¹ ∘ (ind𝟚 E) ∼ id η (e₀ , e₁) = refl _